(3x)^2+(2x)^2=13^2

Simple and best practice solution for (3x)^2+(2x)^2=13^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2+(2x)^2=13^2 equation:



(3x)^2+(2x)^2=13^2
We move all terms to the left:
(3x)^2+(2x)^2-(13^2)=0
We add all the numbers together, and all the variables
5x^2-169=0
a = 5; b = 0; c = -169;
Δ = b2-4ac
Δ = 02-4·5·(-169)
Δ = 3380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3380}=\sqrt{676*5}=\sqrt{676}*\sqrt{5}=26\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-26\sqrt{5}}{2*5}=\frac{0-26\sqrt{5}}{10} =-\frac{26\sqrt{5}}{10} =-\frac{13\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+26\sqrt{5}}{2*5}=\frac{0+26\sqrt{5}}{10} =\frac{26\sqrt{5}}{10} =\frac{13\sqrt{5}}{5} $

See similar equations:

| |3y-7|-10=-5 | | -12=18+-2z | | (3x^2)-6x=0 | | 3x^-1+0.5x-3.5=0 | | n/10–-37= 38 | | 3(-2x+1)-((3x+1)/2)=((4(-3x+1x))/2)+2(3x+1) | | 41=11x-23 | | 20+3r=56 | | 139=11x-23 | | 22-3q=13 | | 11x-23=139 | | 22–3q=13 | | 11x-23=41 | | (b+5)(b+8)=0 | | x−3/7=4 | | c3– 1= 1 | | (x-1)(x+5)(x+8)(x+2)-880=0 | | 4y=(y-7) | | 24+6k=6(-4-k) | | (6a-7)^2=68 | | 13=4+3h | | 3(x-6)-6(x-3)=x+9-(x-9) | | 7x+49=497 | | 2p=(p-6) | | 3840=(100+5x)(40-2x) | | 2b-9=5b+6 | | 8s=3(12-7s)=49 | | x/4+4x=150 | | 4x+4x^2-3=0 | | (d+1³)=64 | | 5x+65=105 | | 3=x+4=9 |

Equations solver categories